Inner divisors and composition operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6 Quasi - Inner Divisors

We study divisibilities between bounded holomorphic quasi-inner functions in H∞ and operator-valued bounded holomorphic quasi-inner functions in H∞(Ω, L(K)) where Ω is a bounded finitely connected region. Furthermore, we characterize these divisibilities by using rationally-invariant subspaces.

متن کامل

What Do Composition Operators Know about Inner Functions?

This paper gives several different ways in which operator norms characterize those composition operators Cφ that arise from holomorphic self-maps φ of the unit disc that are inner functions. The setting is the Hardy space H of the disc, and the key result is a characterization of inner functions in terms of the asymptotic behavior of the Nevanlinna counting function.

متن کامل

Spectra of Some Composition Operators and Associated Weighted Composition Operators

We characterize the spectrum and essential spectrum of “essentially linear fractional” composition operators acting on the Hardy space H2(U) of the open unit disc U. When the symbols of these composition operators have Denjoy-Wolff point on the unit circle, the spectrum and essential spectrum coincide. Our work permits us to describe the spectrum and essential spectrum of certain associated wei...

متن کامل

Composition operators and natural metrics in meromorphic function classes $Q_p$

‎In this paper‎, ‎we investigate some results on natural metrics on the $mu$-normal functions and meromorphic $Q_p$-classes‎. ‎Also‎, ‎these classes are shown to be complete metric spaces with respect to the corresponding metrics‎. ‎Moreover‎, ‎compact composition operators $C_phi$ and Lipschitz continuous operators acting from $mu$-normal functions to the meromorphic $Q_p$-classes are characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1982

ISSN: 0022-1236

DOI: 10.1016/0022-1236(82)90032-5